Sensitivity of leaf size and shape to climate: global patterns and paleoclimatic applications.

نویسندگان

  • Daniel J Peppe
  • Dana L Royer
  • Bárbara Cariglino
  • Sofia Y Oliver
  • Sharon Newman
  • Elias Leight
  • Grisha Enikolopov
  • Margo Fernandez-Burgos
  • Fabiany Herrera
  • Jonathan M Adams
  • Edwin Correa
  • Ellen D Currano
  • J Mark Erickson
  • Luis Felipe Hinojosa
  • John W Hoganson
  • Ari Iglesias
  • Carlos A Jaramillo
  • Kirk R Johnson
  • Gregory J Jordan
  • Nathan J B Kraft
  • Elizabeth C Lovelock
  • Christopher H Lusk
  • Ulo Niinemets
  • Josep Peñuelas
  • Gillian Rapson
  • Scott L Wing
  • Ian J Wright
چکیده

• Paleobotanists have long used models based on leaf size and shape to reconstruct paleoclimate. However, most models incorporate a single variable or use traits that are not physiologically or functionally linked to climate, limiting their predictive power. Further, they often underestimate paleotemperature relative to other proxies. • Here we quantify leaf-climate correlations from 92 globally distributed, climatically diverse sites, and explore potential confounding factors. Multiple linear regression models for mean annual temperature (MAT) and mean annual precipitation (MAP) are developed and applied to nine well-studied fossil floras. • We find that leaves in cold climates typically have larger, more numerous teeth, and are more highly dissected. Leaf habit (deciduous vs evergreen), local water availability, and phylogenetic history all affect these relationships. Leaves in wet climates are larger and have fewer, smaller teeth. Our multivariate MAT and MAP models offer moderate improvements in precision over univariate approaches (± 4.0 vs 4.8°C for MAT) and strong improvements in accuracy. For example, our provisional MAT estimates for most North American fossil floras are considerably warmer and in better agreement with independent paleoclimate evidence. • Our study demonstrates that the inclusion of additional leaf traits that are functionally linked to climate improves paleoclimate reconstructions. This work also illustrates the need for better understanding of the impact of phylogeny and leaf habit on leaf-climate relationships.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sensitivity of leaf size and shape to climate within Acer rubrum and Quercus kelloggii.

* Variation in the size and shape (physiognomy) of leaves has long been correlated to climate, and paleobotanists have used these correlations to reconstruct paleo-climate. Most studies focus on site-level means of largely nonoverlapping species sets. The sensitivity of leaf shape to climate within species is poorly known, which limits our general understanding of leaf-climate relationships and...

متن کامل

Green Approach to Synthesis of Pt and Bimetallic Au@Pt Nanoparticles Using Carica Papaya Leaf Extract and Their Characterization

This study reports a green approach to synthesis of monometallic platinum nanoparticles (Pt NPs) and bimetallic aurium@platinum nanoparticles (Au@Pt) using aqueous leaf extract of Carica papaya as a reducing and stabilizing agent. The nature and morphology of as-synthesized PtNPs and bimetallic Au@Pt NPs were characterized using UV/vis spectroscopy (UV–vis), high resolution transmission electro...

متن کامل

Temperature simulation of southwestern Iran during (2015-2050) using data from the general air circulation model

In recent years, global warming and climate change have been associated with dire consequences for human societies. Changes in climate patterns can lead to severe floods, extreme heat and cold, more frequent droughts, and global warming. This increase in global warming has upset the Earthchr('39')s climate balance and caused widespread climate change in most parts of the world, known as climate...

متن کامل

Convergence in the temperature response of leaf respiration across biomes and plant functional types.

Plant respiration constitutes a massive carbon flux to the atmosphere, and a major control on the evolution of the global carbon cycle. It therefore has the potential to modulate levels of climate change due to the human burning of fossil fuels. Neither current physiological nor terrestrial biosphere models adequately describe its short-term temperature response, and even minor differences in t...

متن کامل

Climate Reconstruction from Leaf Size and Shape: New Developments and Challenges

—Leaf physiognomy (size and shape) in fossils is commonly used to reconstruct terrestrial paleoclimate. Physiognomic leaf-climate methods are underpinned mostly by the covariation between toothed margins and mean annual temperature (MAT) and between leaf size and mean annual precipitation. Digital leaf physiognomy, a multivariate method based largely on variables that are functionally linked to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The New phytologist

دوره 190 3  شماره 

صفحات  -

تاریخ انتشار 2011